To login to hpc from powershell:
ssh lewis.hotchkiss@login-bluec-01

There are different ways of copying files to the cluster. One way is by using the scp command, the
other is to set up WinSCP:

To copy files from local to hpc:
scp P:/lewishotchkiss/Documents/filename.py lewis.hotchkiss@login-bluec-01:~/

To copy files from hpc to local:
scp lewis.hotchkiss@login-bluec-01:~/folder/filename.py P:/lewishotchkiss/Documents

Connect folders to hpc via WinSCP:
Use WinSCP program

Host: login-bluec-01

Username: lewis.hotchkiss
Password: 3k 3k %k 3k %k %k %k %k kok

You will need a singularity container to be able to run your code, this comes in the form of a SIF file.
One of the tools available to automatically create singularity containers for you is neurodocker.
Neurodocker allows you to create singularities by choosing your own base operating system,
neuroimaging software you might want to use, and programming languages such as Python.
Alternatively, you can create your own singularity from scratch.

Neurodocker (Generate singularity recipe file on local):
Neurodocker generate singularity \
--base-image debian:stretch \
--pkg-manager apt \
--fsl version=5.0.10 \
--miniconda version=4.6.14 \
env_name=neuro \
pip_install “xnat minio” > SingularityRecipe

Build Singularity (on local):
sudo singularity build python-fsl.sif SingularityRecipe

There are two ways of running scripts with singularity:

To run container:
singularity exec ./python-fsl.sif python3 myscript.py

To run container as shell:
singularity shell ./python-fsl.sif



In the first one, you specify the script and what package you want to use to run it. In the second one,
you just run the container as shell which then allows an interactive session. An example is shown
below:

01: $ singularity exec ./pyfsl.sif python3 test.py

Singularity> python3
Python 3.7.3 (default, Mar 27 2019, 22:11:17)
Anaconda, Inc. on linux
Type "help™, "copyright", "credits” or "license" for more information.

>>> print("hello")

singularity> o

This allows you to quickly test if different parts of your scripts are working as they should.

However, you want to be submitting these scripts to the HPC via SLURM.

Submitting jobs via SLURM

To submit jobs to the cluster via SLURM, you need to create a shell script. You can do this by typing
nano into the terminal which will then open up a text editor in the terminal.

GNU nano 6.2

singularity ./pyfsl.sif python3 my script.py

As you can see, | used the same command as above ‘singularity exec’, to run the script.

Save this file and exit back to terminal.

You can then run your script by typing sbatch script_name.sh

Below shows a list of commands that you can use with slurm, including job submissions and job
management.
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Submitting jobs in parallel

The command srun is the simplest way of running jobs in parallel. Below shows a simple example of
running three python scripts in parallel. This will then produce a file named jobid.out, where jobid is
the number of the job submitted. You can open this using nano jobid.out to view the output.

GNU nano 6.2 parallel test.sh

srun i i 1 bash "singularity exec ./pyfsl.sif python3 scripti.py”
srun i i EEY "singularity exec ./pyfsl.sif python3 script2.py”
srun i i 1 bash "singularity exec ./pyfsl.sif python3 script3.py”
walt




