To login to hpc from powershell:
ssh lewis.hotchkiss@login-bluec-01

There are different ways of copying files to the cluster. One way is by using the scp command, the
other is to set up WinSCP:

To copy files from local to hpc:
scp P:/lewishotchkiss/Documents/filename.py lewis.hotchkiss@login-bluec-01:~/

To copy files from hpc to local:
scp lewis.hotchkiss@login-bluec-01:~/folder/filename.py P:/lewishotchkiss/Documents

Connect folders to hpc via WinSCP:
Use WinSCP program

Host: login-bluec-01

Username: lewis.hotchkiss
Password: 3k 3k %k 3k %k %k %k %k kok

You will need a singularity container to be able to run your code, this comes in the form of a SIF file.
One of the tools available to automatically create singularity containers for you is neurodocker.
Neurodocker allows you to create singularities by choosing your own base operating system,
neuroimaging software you might want to use, and programming languages such as Python.
Alternatively, you can create your own singularity from scratch.

Neurodocker (Generate singularity recipe file on local):
Neurodocker generate singularity \
--base-image debian:stretch \
--pkg-manager apt \
--fsl version=5.0.10 \
--miniconda version=4.6.14 \
env_name=neuro \
pip_install “xnat minio” > SingularityRecipe

Build Singularity (on local):
sudo singularity build python-fsl.sif SingularityRecipe

There are two ways of running scripts with singularity:

To run container:
singularity exec ./python-fsl.sif python3 myscript.py

To run container as shell:
singularity shell ./python-fsl.sif

In the first one, you specify the script and what package you want to use to run it. In the second one,
you just run the container as shell which then allows an interactive session. An example is shown
below:

01: $ singularity exec ./pyfsl.sif python3 test.py

Singularity> python3
Python 3.7.3 (default, Mar 27 2019, 22:11:17)
Anaconda, Inc. on linux
Type "help™, "copyright", "credits” or "license" for more information.

>>> print("hello")

singularity> o

This allows you to quickly test if different parts of your scripts are working as they should.

However, you want to be submitting these scripts to the HPC via SLURM.

Submitting jobs via SLURM

To submit jobs to the cluster via SLURM, you need to create a shell script. You can do this by typing
nano into the terminal which will then open up a text editor in the terminal.

GNU nano 6.2

singularity ./pyfsl.sif python3 my script.py

As you can see, | used the same command as above ‘singularity exec’, to run the script.

Save this file and exit back to terminal.

You can then run your script by typing sbatch script_name.sh

Below shows a list of commands that you can use with slurm, including job submissions and job
management.

~

—mem—<MB= Memory required per node. sncc.tmgr - View and modify account information.
Options:
—-mem-per-cpu=<MB=> Memory required per . i Commit ch . o
allocated CPU. = <
workload manager - P T
3 - B - - --parseable utput delimited by
P -N<minnodes[-maxnodes]= | Node count required for the P
Job Subrr_llss_lon . iob. . o
salloc - Obtain a job allocation, - ommands:
shatch - Submit a batch script for later execution. -nEeount= {\uml'iw:rdof tasks to be add <ENTITY> <SPECS> | Add an entity. Identical to
o . aunched. R ——— R
srun - Obtain a job allocation (as needed) and execute an create <ENTITY> <SPECS> | the ereate command.
application. --niodelist<names> HEEmE Rt names (o delete <ENTITY> where Delete the specified entities.
- - include in job allocation. SPECS~
--array=<indexes= Job armay specification, — _ - i
(e, “--array=1-10") (shatch command only) —-oulput=<name> ‘:Ll;’ :: which to store job list <ENTITY= [<SPECS>] | Display information about
--account=<name= Account to be charged for ——— = — the specific entity.
resources used. pESditianaEnames"y P“”'L“"_“r‘;"“”" in hichit modify <ENTITY> where | Modify an entity.
e o am thed ru the job. <SPECS> sel <SPECS>
nitiate job after speci 3 -
(2. “--begin=18:00:00") time, ! e —qoF=<name> Quality OF Service.
& ¢ B — . Y - - - Entities:
lusters—< - Clust 10 run the iob --signal=[B:]<num=[f@time] | Signal job when app g - —
--clusters==name= uster(s) to run the job. time limit, account Account associated with job.
(shatch command only) — ———
_time=<time> Wall clock time limit. chuster [8 .l’u.\le‘r.-\'m.rrr.' parameter in the
--constraint=<features> Required node features. slurm.conf.
- --wrap==<command_string>= [Wrap specified command in a o i
--cpu-per-task=<count= Mumber of CPUSs required simple “sh™ shell, qos Quality of Service,
per sk, (sBEICH commandingRgh user User name in system.
--dependency=<statc;jobid= | Defer job until specified jobs .
reach specified state.
Accounting Job Management
--error=<filename= File in which to store job > e N :
- - er— y sacet - Display accounting data. sheast - Transfer file to a job's compute nodes.
--exclude=<names> Specific host names o ions i N, 7
CILEE = aTes, c;:ILudch f'ro;n]Job | allisers Displays all users jobs. sheast foptions] SOURCE DESTINATION
. R . - --force Replace previously existing file,
_exclusive[=user] AllDEa A Rodes calorBe --accounts=<name= Displays jobs with specified 7 a i ¢
shared with other jobs/users. accounts. --preserve | Preserve modification times, access times, and
- - o - -) ACCess permissions.
--export=<name[=value]> Export identified --endtime=<time= End of reporting period.
environment variables. a— J— R . . .
~format—<spec> Format output. scancel - Signal jobs, job arrays, and/or job steps.
--gres=<name[:count]> G““""”j resources required --name=<jobname> Display jobs that have any of these
per nace. name(s). --account-<name= Orperate only on jobs charging the
-input==<name= File f';‘l’“'! which to read job -partition=<names> | Comma separated list of partitions crestied ampmi
fLputdate, to select jobs and job steps from. --name=<name= Operate only on jobs with specified
--iob-name=<name= Job name. --state=<state_list Display jobs with specified states. e
label Prepend task 1D to output. starttime=<time> | Start of reporting period, ppartitonsnamesy| Operac ol 4RSS B
(srun command only) AERSRET partition/queue.
--licenses=<name[;count]> | License resources required S ChedMD --qos=<name= ODGI';‘::“'!’ on jz?’ using the
e il uali service,
for entire job. e i Tt e spec quality

()

--reservation=<name> | Operate only on jobs using the --formar=<spec= Output format to display. SLURM_ARRAY_TASK_ID | Set to the task ID if part of
specified reservation. - - - - a joh array.
seconds=> Print the state at specified interval,
--stale=<names= Operate only on jobs in the specified
) g|£m o @ s --long Print more detailed information. SLURM_CLUSTER_NAME | Name of the cluster
; executing the job.
yy— . arate fohe . --Node Print information in a node-oriented
HaerEname f:j'z"c:?;;d"ﬂ:r"" jobs from the format. SLURM_CPUS_PER_TASK | Number of CPUs requested
_ - — - - — per task.
--nodelist== < | Operate onl iabs using th --partition=<names> | View only specilied partitions.
e ind conrte oo SLURM_JOB_ACCOUNT | Account name.
speeihied compute nodes. --reservation Display information about advanced
reservations. SLURM_JOB_ID Job 1D,
squene - View information about jobs. R Display reasons nodes ate in the SLURM_JOB_NAME Job Name.
down, drained, fail or failing state. : N
h . - . S Or T Mg e SLURM_JOB_NODELIST Names of nodes allocated
--account=<name> View only jobs with specified --state=<names= View only nodes specified states. to joh.
accounts.
SLURM_JOB_NUM_MNODES | MNumber of nodes allocated
--clusters=<name View jobs specified clusters. T . .o . i
CustersT Fname oW Jobs on specthied clusters scontrol - Used view and modify configuration and state. to jab.
--format=<spec= Output format to display. Also see the sview graphical user interface version. SLURM_JOB_PARTITION | Partition/queue running the
(e.g. “--format=" Specily fields, size, order, ete. job.
—-jobs<job_id_list= Comma separated list of job IDs --details Make show command print more details. SLURM_JOB_UID User 1D of the job's owner,
to display. - - E " -
--oneliner Print information on one line. SLURM_JOB_USER User name of the job's
--name==name=> View only jobs with specified owner,
names,
— Commands: SLURM_RESTART_COUNT | Number of times job has
et :;.Irc.‘m:? Jobe In cp create SPECIFICATION | Create a new partition or restarted.
SLURM_PROCID Task 1D {MP1 rank).
--priority Sort jobs by priority, a
delete SPECIFICATION | Delete the entry with the SLURM_STEP_ID Job step 1D,
--qos=<name> View only jobs with specified specified SPECIFICATION - - -
Qualities OF Service, SLURM_STEP_NUM_TASKS | Task count {number of
reconfigure All Slurm daemons will re-read MPI ranks).
--start Report the expected start time the configuration file.
and resources to he allocated for)
pending jobs in order of requene JOB_LIST Requeue a running, suspended or Daemons
increasing start time. completed batch job. ; -
- - slurmetld Executes on cluster's “head” node to
__state=<names> View only jobs with specified show ENTITY 1D Display the state of the specified manage workload.
states. entity the specified
identification slurmd Executes on each compute node to
--users=<names= View only jobs for specified locally manage resources,
users. update SPECIFICATION | Update job, step, node, partition,) J” o o = m—
or reservation configuration per £ IUt resources limits,
the supplied specification. licenses, and archives accounting
sinfo - View information about nodes and partitions. records.
- . o
i Display information sboutall Environment Variables SchedMD slurm
pErRane, SLURM_ARRAY JOB_ID | Set to the job ID if part of a Shurm Support end|Eave konwat workload manager
--dead If set. only report state information AL Copyright 2017 SchedMD LLC. All rights reserved.
for nor responding (dead) nodes. http://www.schedmd.com

Submitting jobs in parallel

The command srun is the simplest way of running jobs in parallel. Below shows a simple example of
running three python scripts in parallel. This will then produce a file named jobid.out, where jobid is
the number of the job submitted. You can open this using nano jobid.out to view the output.

GNU nano 6.2 parallel test.sh

srun i i 1 bash "singularity exec ./pyfsl.sif python3 scripti.py”
srun i i EEY "singularity exec ./pyfsl.sif python3 script2.py”
srun i i 1 bash "singularity exec ./pyfsl.sif python3 script3.py”
walt

